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13.1 Logical and Vector Clocks

13.1.1 Recap from last lecture

For logical clocks, the problem we address is how to reason about the ordering of events in a distributed
environment without the specific times at which events occurred. We can use the concept of a logical time,
which depends on message exchanges among processes, to figure out the event order. A message involves two
events: the sending of a message on the first process, and the receipt of the message in the second process.
Since the message has to be sent before it is received, those two events are always ordered. This allows us
to order two events across machines. In addition, local events within a process are also ordered based on the
execution order. According to the transitive property of events ordering, events across processes are ordered.

Lamport’s logical clock is a partial ordering of events. Specifically, the events that occur after the send
cannot be ordered w.r.t. another process unless there are more messages exchanged. Similarly, events that
occur before the receipt of a message also cannot be ordered w.r.t. other processes unless there are other
prior messages that have been received.

Another disadvantage of logical clocks is that it does not have causality. If event A has occurred before
event B, then the clock value of A is less than the clock value of B. However, if a clock value is numerically
less than the other, we cannot say the first event has happened before the second one. In Lamport’s clock
if events are concurrent we cannot assign any ordering to them as there is no happen before relationship.
Therefore, we only get a partial order using logical clocks.

13.1.2 Total Order

)

To convert a partial order into a total order, we can impose an arbitrary order by appending ‘.’ and a
process’ id to a logical time value in each process. As a result, the process id can be used to break ties.
What requires attention is that the total order is just a tie-breaking rule to assign an order for the events,
so it does not actually tell us the real order of events. All the Lamport’s clock properties still hold. This
is an approach that many system designers used to take Lamport’s clock which gives us a partial order and
convert it into a set of events that gives us a total order.

13.1.3 Example: Totally-Ordered Multicasting

Here we use the example to show the idea of total orders. There are two replicated databases. Because they
are replicated a query goes to both copies and both will update. With a partial ordering, the problem arises
when there are queries that are sent in parallel. It may happen that when a user (User 1) sends a query
to both replicas and is closer geographically to one of them (thus causing the query to be recieved sooner
in the closer replica), and another user (User 2) sends another query at the same time and is closer to the
other replica, the queries are executed out of order, thus producing inconsistent results.
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Figure 13.1: Creating total order by appending process id
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Figure 13.2: Example: Totally-Ordered Multicasting

To ensure the ordering is the same on each replica, we can use Lamport’s clock to order all the transactions
by a totally-ordered multicasting approach. When a set of transactions comes in to any replica, we use a
logical value to clock them similarly with the above idea of total order.

In this example, whenever a message is sent to one database, it is also sent to all the other databases. All
queries and transactions are replicated. So messages are multicast to all the database replicas as shown in
Figure 13.2. Like the total order example, the logical time in each machine can be appended with “.” and
its machine id, allowing us to break ties for the logical clock values across different machines. Thus, each
database replica will respect to a consistent order.

The details of this algorithm are not expended too much in the lecture, but the totally-ordered multicasting
approach can ensure each replica receives all the transactions and executes them in a consistent order.

13.1.4 Causality

In Lamport’s algorithm we couldn’t say that if the clock value of A is less than B, then A has happened
before B. Nothing can be said about events by comparing timestamps. In some cases, we may need to
maintain causality, i.e., if A happened before B, A is causally related to B. Causal delivery means that if the
send of a message happens before another message, the receive should also be in this order. We need a time
stamping mechanism such that if T(A) < T(B), A should have causally preceded (happened before) B.
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13.1.5 Vector Clocks

Causality can be captured by means of vector clocks. Instead of just one integer, every process maintains
a vector as long as the number of processes, so each process i has a vector V;. V;[i] is the number of event
that have occured at 4, which is effectively its Lamport’s clock. V;[j] is the number of events i knows have
occured at process j. Vector clocks are updated as follows in each of the below situations:

e Local event: increment V;[I]

e Send a message: piggyback entire vector V

Receipt of a message: V;[k] = max(V;[k], Vi[k])

Receiver is told about how many events the sender knows occurred at another process k

Also V;[j] = Vj[j] +1

The idea of how vector clocks works is shown in Figure 13.3. Assume we have processes Py, P, and P3. Each
process keeps an integer logical clock and the logical clock will be ticked whenever a local event happens.
However, rather than keeping a single clock value like before, each process maintains a vector of clock value,
one for each process in the system. Essentially, all clocks get initialized to (0,0,0). The three elements
are for process Py, P, and P3 respectively. Every time an event occurs in process i (i can be Py, P, or
P3), the i-th element of process i’s vector gets incremented. E.g., process P; get its logical clocks in the
first element of its vector clock incremented in the first events. When a message is sent by process i, the
vector clock is piggybacked onto that message. When a process j received the message, the i-th element
will be the maximum of i-th element of vector clock i and local vector clock j, and the j-th element will
get incremented by one.

Two examples are shown in Figure 13.3 when a message is passed from P; to P, and V5 is updated to
(1,2,0) and then when a message is passed from P» to P3 and V3 is updated to (1,3,4). Through sequence
of messages each vector clock knows something about the other processes either directly or indirectly.
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Figure 13.3: Vector Clocks

To check if there is a happen before relationship maintains lets take the send (S) from P; and the recieve at
P; (R). Clearly, S has happened before R. We need to have (1,3,4) > (1,0,0). We define greater between
vectors as V1;V2 if every element of V1 is > every element of V2 and there is at least one element that is
strictly greater. This is true in the case of S and M. We cannot compare (1,4,0) and (1,3,4). That means
they are concurrent events. Vector clocks claims the causality property.

It is worth noting that, unlike the logical clocks which are all comparable integers, vector clocks give undefined
order relationship to two concurrent or independent events, which respects the reality and causality.
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Q: Are the clock distributed among each process?
A: The clock is not distributed, it is a vector that each process maintains (i.e., each process maintains its
local array)

13.1.6 Enforcing Causal Communication

Using vector clocks, it is now possible to ensure that a message is delivered only if all messages that causally
precede it have also been received as well. To enable such a scheme, we will assume that messages are
multicast within a group of processes. As an example, consider three processes PO, P1, and P2 as shown in
Figure 13.4. At local time (1,0,0), PO sends message m to the other two processes. After its receipt by P1,
the latter decides to send m*, which arrives at P2 sooner than m. At that point, the delivery of m* is delayed
by P2 until m has been received and delivered to P2’s application layer.
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Figure 13.4: Enforcing causal communication

13.2 Global States and Distributed Snapshots

13.2.1 Global State

Problem definition: We want to run a distributed application where one of n processes crashes. Rather
than killing all the processes and starting from the beginning, we can periodically take snapshots (or check-
points) of the distributed application to keep a global state and start from the latest snapshot.

In a distributed system, when there are n processes communicating with each other, taking a checkpoint is
harder. We need to take the snapshot in a consistent manner.

The global state includes the local state of each process and messages that are in transit (like the TCP
buffers). The snapshot for a global state should be captured in a consistent fashion even without clock
synchronization. A “consistent fashion” means that whenever restarting the computation from a checkpoint,
you should get the same end result as if there was no cache at all. We will eliminate the notion of a clock
and derive a technique independent of clock synchronization.

Specifically, when a message exchanging crosses the snapshot taking, the sending point of the message instead
of the receipt should be captured in the state. As shown in Figure 13.5, a consistent cut (a) can achieve the
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consistent state while a inconsistent cut (b) can not. For (b), if you restart the computation from whenever
the dotted line hits each of the processes, m2 received by P3 can be inconsistent — P3 already saw the m2
before the snapshot and it will see m2 again after re-computation from the snapshot and P2 resent it. the
send should be to the left of the cut and the receive to the right.

Q: Can we instead send messages with unique IDs, so that we can track which message is sent/received?
A: You could, but the consistent cut eliminates the need for the unique IDs.
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Figure 13.5: Consistent and Inconsistent cuts

13.2.2 Distributed Snapshot

A simple technique to capture is to assume a global synchronized clock and freeze all machines at the same
time and capture whatever that are in all memories at the exactly same time and capture everything that is
in transit. But there is no global clock synchronization. Distributed snapshotting is a mechanism that gives
a consistent global state without a global clock synchronization.

The Photograph Example: Imagine a photographer taking a picture of the sky with birds flying around
in it. They cannot capture entire sky in one picture, so instead they stitch pictures of the left, middle, and
right parts of sky. If they take a picture of the left, and then take a picture of the middle, but a bird has
flown from left to the middle, they have taken a picture of that bird twice because of inconsistency. The goal
is to get a consistent photo—for it to be consistent, then all three pictures have captured all of the birds
that were in the sky exactly once.

Photographs are like snapshots (in fact, this is where the name comes from). Birds are messages that are
going from one process to another. You do not want a bird missing or duplicated in your picture just like
you do not want a message lost or double counted.

13.2.3 Distributed Snapshot Algorithm

Assume each process communicates with another process using undirectional point-to-point channels (e.g.,
TCP connections). Any process can initiate the snapshot algorithm. When a process initiates the algorithm,
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it will first checkpoint its local state, and then send a marker on every outgoing channel. When a process
receives a marker, it will have different actions depending on whether it has already seen the marker for
this snapshot. If the process sees a marker at the first time, it will checkpoint its state, send markers out
and start saving messages on all the other channels. If the process sees a marker for the snapshot at the
second time, it will stop saving messages for the channel from which the marker comes. A process will finish
a snapshot until it receives a marker on each incoming channel and processes them all.

Figure 13.6: Distributed Snapshot Example

For example, in Figure 13.6, process 1, 2 and 3 communicates with each other through the duplex TCP
connections. When process 1 initiate a snapshot, it will first save its memory contents (state) into the disk,
and then send a marker (in blue) to 2 and 3. It will also start to save the incoming messages(in red) (TPC
buffers) from 2 and 3. When 2 receives a marker from 1, it will start to checkpoint state, send a marker out
to 1 and 3, and start saving messages from 3. Assume 3 sees the marker sent from 1 first, it will checkpoint
its state, sends out a marker to 1 and 2, and start saving messages from 2. 1 will stop saving messages for
2 or 3 until a marker from 2 or 3 arrives. 2 will stop saving messages for 3 until a marker from 2 arrives.
And P3 will stop saving messages for 2 until a marker from 3 arrives. Each process will finish this snapshot
when it sees a marker from every incoming channel. Thus, a distributed snapshot captured.

13.2.4 Snapshot Algorithm Example

Q decides to take a snapshot. Consider Figure 13.7. b) It receives a marker for the first time and records
its local state; ¢) Q records all incoming message; d) Q receives a marker for its incoming channel and
finishes recording the state of the incoming channel. First incoming marker says start recording and all
other incoming messages say stop recording.

Q: If you have N processes in the system, does that mean each process has to wait for N — 1 markers before
it can stop recording?

A: The number of the expected markers is not dependent on the number of processes in the system. Instead,
the number of expected markers of each process depends on the number of socket connections of that process.

13.3 Termination Detection

This involves detecting the end of a distributed computation. We need to detect this since a process cannot
just exit after completing its events if another process wants to send it a message. Let sender be the
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Figure 13.7: Snapshot algorithm example.

predecessor, and receiver be the successor. There are two types of markers: Done and Continue. After
finishing its part of the snapshot, process Q sends a Done or a Continue to its predecessor. Q can send a
Done only when:

e All of Q’s successors send a Done

e Q has not received any message since it check-pointed its local state and received a marker on all
incoming channels

o Else send a Continue

Computation has terminated if the initiator receives Done messages from everyone.

Q: What happens when there is a failure?
A: Terminal detection algorithm does not handle failures. We need to go previous snapshot if there is a
crash.

13.4 Election Algorithms

13.4.1 Bully Algorithm

The bully algorithm is a simple algorithm, in which we enumerate all the processes running in the system
and pick the one with the highest ID as the coordinator. In this algorithm, each process has a unique ID
and every process knows the corresponding ID and IP address of every other process. A process initiates an
election if it just recovered from failure or if the coordinator failed. Any process in the system can initiate
this algorithm for leader election. Thus, we can have concurrent ongoing elections. There are three types of
messages for this algorithm: election, OK and I won. The algorithm is as follows:

1. A process with ID ¢ initiates the election.

2. It sends election messages to all process with ID > 3.

3. Any process upon receiving the election message returns an OK to its predecessor and starts an election
of its own by sending election to higher ID processes.
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4. If it receives no OK messages, it knows it is the highest ID process in the system. It thus sends I won
messages to all other processes.

5. If it received OK messages, it knows it is no longer in contention and simply drops out and waits for
an I won message from some other process.

6. Any process that receives I won message treats the sender of that message as coordinator.
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Figure 13.8: Depiction of Bully Algorithm

An example of Bully algorithm is given in Figure 13.8. Communication is assumed to be reliable during
leader election. If the communication is unreliable, it may happen that the elected coordinator goes down
after it being elected, or a higher ID node comes up after the election process. In the former case, any node
might start an election process after gauging that the coordinator isn’t responding. In the latter case, the
higher ID process asks its neighbors who is the coordinator. It can then either accept the current coordinator
as its own coordinator and continue, or it can start a new election (in which case it will probably be elected as
the new coordinator). This algorithm runs in O(n?) time in the worst case when lowest ID process initiates
the election. The name bully is given to the algorithm because the higher ID processes are bullying the lower
ID processes to drop out of the election.



